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Abstract
An exact treatment of screened electrostatics in electrolyte solutions is presented. In
electrolytes the anisotropy of the exponentially decaying electrostatic potential from a molecule
extends to the far field region. The full directional dependence of the electrostatic potential
from a charged or uncharged molecule remains in the longest range tail (i.e. from all multipole
moments). In particular, the range of the potential from an ion and that from an electroneutral
polar particle is exactly the same in general. This is in contrast to the case in vacuum or pure
polar liquids, where the potential from a single charge is longer ranged than that from a dipole,
which is, itself, longer ranged than the one from a quadrupole etc. The orientational dependence
of the exponentially screened electrostatic interaction between two molecules in electrolytes is
therefore rather complex even at long distances. These facts are formalized in Yukawa
multipole expansions of the electrostatic potential and the pair interaction free energy based on
the Yukawa function family exp(−κr)/rm, where r is the distance, κ is a decay parameter and
m is a positive integer. The expansion is formally exact for electrolytes with molecular solvent
and in the primitive model, provided the non-Coulombic interactions between the particles are
sufficiently short ranged. The results can also be applied in the Poisson–Boltzmann
approximation. Differences and similarities to the ordinary multipole expansion of
electrostatics are pointed out.

On the other hand, when the non-Coulombic interactions between the constituent particles
of the electrolyte solution contain a dispersion 1/r 6 potential, the electrostatic potential from a
molecule decays like a power law for long distances rather than as a Yukawa function. This is
due to nontrivial coupling between the electrostatic and dispersion interactions. There remains
an exponentially decaying component in the electrostatic potential, but it becomes oscillatory in
the presence of the dispersion interactions. For weak dispersion forces and low electrolyte
concentrations, the wavelength is, however, long compared to the decay length of the
exponential decay. In other cases the qualitative behaviour may be substantially different from
the conventional picture. The Green function for the electrostatic potential (the ‘screened
Coulomb potential’) in simple electrolytes ultimately decays like const/r 6 for large r , where
the constant prefactor depends on the ratio between the strength of the dispersion forces and the
square of the average ionic charge, (q+ + |q−|)/2.

1. Introduction

Screening of electrostatic interactions is a prominent and
important property of electrolytes and is a central concept in
our understanding of systems like bulk salt solutions, colloidal

dispersions, polyelectrolytes and macromolecular solutions.
Such systems are of importance in, for example, biosciences,
soft matter physics, soil science and surface and colloid
chemistry. Often, the term ‘screened Coulomb potential’ is
equated with the potential from a charge in an electrolyte
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as predicted by the Debye–Hückel theory [1] for electrolyte
solutions. This potential has the form of a Yukawa function
exp(−κDr)/r for all distances r , where the decay length
1/κD equals the Debye length. In the application of this
potential to calculate interactions between charged particles or
functional groups, it is common to use the actual charges of the
various entities to obtain the electrostatic interaction energy.
The results of the Debye–Hückel theory are, however, only
valid for sufficiently dilute solutions, where one can neglect
ion–ion correlations (including the effects of finite ion sizes)
among the ions in the ion atmosphere surrounding each ion.
The Debye–Hückel theory is based on the Poisson–Boltzmann
(PB) mean field approximation, where such correlations are
ignored. The PB approximation is also the basis for the Gouy–
Chapman [2, 3] theory for electric double layers and the related
Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [4, 5]
of colloidal particle interactions. In the latter theory, the
forces between the particles consist of the sum of van der
Waals (vdW) and electric double layer interactions, which are
assumed to be independent of each other and additive.

The PB theory is an approximation within the primitive
model of electrolyte solutions where the ions are modelled
as charged hard spheres and solvent is treated as a dielectric
continuum solely characterized by its dielectric constant
(relative permittivity) εr. When many-body ionic correlations
are important the screened Coulomb potential is no longer
a simple Yukawa function, but provided the electrolyte
concentration is not too high the potential decays like such
a function for large r within the primitive model [6]. This
also holds in electrolyte solution models with discrete solvent
molecules [7]. The Yukawa function decay of the electrostatic
potential in electrolytes has consequences that until recently
have been largely ignored, namely the anisotropy of the
potential from a molecule in the far field region. This feature
has been found in linearized PB approaches [8–11] and in exact
statistical mechanics treatment of electrolytes with molecular
solvent [12].

The exponential decay of the electrostatic interactions
for large r holds provided the nonelectrostatic interactions
between all particles in the solution are sufficiently short
ranged. This excludes systems with vdW interactions between
the particles. The screened electrostatic interactions and
vdW interactions are not independent of each other and
additive as assumed in the DLVO theory. Instead, they
are coupled so that the electrostatics changes the effects
of the vdW interactions and vice versa. The static (zero
frequency) part of the vdW interaction is screened by the
electrolyte [13] and becomes exponentially short ranged. This
is not the case for the high frequency part, which gives
an r−6 interaction between the particles for large r (or r−7

when retardation effects are included). Such power law
interactions affect the electrostatic interactions and make the
electrostatic potential decay like a power law rather than
exponentially for large r ; this holds both in mean field
PB-like treatment [14] and in exact statistical mechanics
analysis [15, 16]. Furthermore, it has been suggested that
London-type dispersion interactions between ions and between
ions and other particles may play a role in determining the ion

specificity of a range of phenomena related to charged particles
in electrolytes [17]. These matters have been explored in a
number of recent publications; see for example [14, 18–21].
Thus qualitative as well as quantitative effects of ion–ion and
ion–macroparticle dispersion interactions are of great interest
for both fundamental and applied research.

In the present work we shall primarily explore conse-
quences of Yukawa-type screening for electrolyte systems, but
also investigate effects of nonelectrostatic power law interac-
tions in simple electrolytes. For the first topic we will build
on and expand the findings of our previous work [7, 12], to
which we refer for mathematical details and background ma-
terial. Thereby, our aim is to present the results of the analy-
sis in a manner that suits nonspecialists in liquid state theory
(for completeness, we have also inserted some more technical
comments which can be skipped over in a first reading). Im-
portant issues include the concepts of effective charge, effec-
tive dipole and higher order multipoles and investigations of
the long distance features of the screened electrostatic poten-
tial from a molecule and of the interaction free energy between
molecules in electrolytes with molecular solvent. Finally, we
shall investigate the behaviour of the screened Coulomb po-
tential in simple electrolytes with dispersion r−6 interactions
between the ions. This is based on the findings in [15, 16],
which we formulate in the perspective of the general theme of
the present work.

Unless otherwise explicitly stated, the statistical mechani-
cal analysis presented in this paper is exact (no approximations
made) for given pair interaction potentials between the parti-
cles (i.e. for a given Hamiltonian). We shall consider electro-
static potential from and interactions between particles present
in (or immersed in) homogeneous, isotropic bulk systems at
equilibrium. The results are valid provided the electrolyte con-
centration is not too high (what is too high depends on the sys-
tem), and we will assume that the system is not close to criti-
cality.

We will treat both rigid and flexible molecules. For rigid
molecules their relative positions and orientations are relevant.
If the molecules are flexible we consider the orientations
for all possible conformations. For simplicity, whenever we
in the following only say ‘orientation’ of a molecule, we
will implicitly mean ‘conformation and orientation’ when the
molecule is flexible. The molecules and other particles in the
system can have any size, shape and internal charge density
distribution (unless otherwise explicitly stated). We will
assume that the solvent consists of electroneutral molecules
that (usually) are polar. The solutes can have a net charge
or be electroneutral. The charged solutes can be simple ions
(i.e. small, spherical particles with a charge at their centre),
more complex ions with various polar and nonpolar groups,
macroions and/or colloidal particles. In the primitive model
the solvent is replaced by a dielectric continuum and the ions
are charged hard spheres.

In the general, exact case we treat all particles of the
system on the same fundamental level for an infinite system
at equilibrium. Therefore, the average density around a fixed
particle is the same as when the particle is free to move in the
system, provided that the density in the latter case is recorded
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in the molecule-fixed frame of reference, i.e. we ‘sit’ on the
particle, follow its motion and investigate the surrounding
density. This is a property of classical equilibrium statistical
mechanics, where the momentum degrees of freedom are
decoupled from the positional ones. Everything we say here
about an immersed, fixed particle in the exact case is true also
for the same kind of particle present in the system and free to
move.

The paper is organized as follows. In the next section
we discuss polarization of bulk electrolyte solutions in various
cases and give a general definition of the unit screened
Coulomb potential from several equivalent perspectives. Then
we present the results of a general treatment of electrostatic
potential and intermolecular screened electrostatic interactions
in electrolytes with molecular solvent as well as in the primitive
model. A simple illustrative example of screened electrostatic
potential from a dipole is given, which illuminates some
prominent features of the general theory. A key concept in the
theory is charge density renormalization of molecules, which
is motivated and defined in a physical manner. We give exact
expressions for the long-distance asymptotic behaviour of
screened electrostatic potential and intermolecular interactions
and discuss their implications. In the final part of the paper
we treat simple electrolytes with intermolecular dispersion
and other power law interactions. We examine the long-
range behaviour of various correlation functions and the
screened Coulomb potential. The changes imposed on the
exponential part of the screening by the dispersion interactions
are also discussed. Finally, the main results of the paper
are summarized (an overview of the decay behaviour of the
electrostatic potential is shown in table 1, which can be useful
to examine while reading the paper).

2. Polarization charge density and screened Coulomb
potential

A bulk electrolyte solution exposed to an external electrostatic
potential �Ext(r1) from some source charges immersed in
the solution acquires a polarization charge density ρpol(r2),
which originates from changes in the spatial distributions and
orientations of solvent molecules and dissolved ions (we use
the notation rα = (xα, yα, zα)). The resulting total electrostatic
potential �(r) from the source charges and the polarization
charge density is

�(r1) = �Ext(r1)+
∫

dr2 ρ
pol(r2)φCoul(r21) (1)

where

φCoul(r) = 1

4πε0r
(2)

is the Coulomb potential in vacuum, ε0 is the vacuum
permittivity, r21 = |r21| and r21 = r1 − r2. For weak
electrostatic fields the polarization charge density can be
expressed in linear response theory as

ρpol(r2) =
∫

dr3 �
Ext(r3)χ(r32) =

∫
dr3 �(r3)χ

0(r32)

(linear response) (3)

where χ(r) and χ0(r) are the polarization response functions
for the external and total potentials, respectively. These
functions can be written in terms of the pair correlation
functions of the unperturbed bulk electrolyte solution (or
more specifically, in terms of the charge–charge correlation
function). In Fourier space the relationship between � and
�Ext can be written as

�̃(k) = �̃Ext(k)
ε̃(k)

(linear response) (4)

where

ε̃(k) = [1 + χ̃(k)φ̃Coul(k)]−1 = 1 − χ̃0(k)φ̃Coul(k) (5)

is the (static longitudinal) dielectric function and φ̃Coul(k) =
1/(ε0k2) is the Fourier transform of the Coulomb potential.
For pure solvent (zero electrolyte concentration) the dielectric
function ε̃(k) approaches the dielectric constant εr of the
solvent when k → 0 (i.e. infinite wavelength, corresponding
to the response to a uniform applied electrostatic field). In the
presence of electrolyte ε̃(k) diverges like k−2 when k → 0,
which is a consequence of the electrolyte solution being a
conductor.

For a bulk solution the Green’s function for spatial
propagation of total electrostatic potential between r1 and r2

in the weak field limit, φ0
Coul(r2, r1) = φ0

Coul(r12), satisfies the
Poisson equation

−ε0∇2φ0
Coul(r12) =

∫
dr3 φ

0
Coul(r13)χ

0(r32)+ δ(3)(r12), (6)

where the first term in the right hand side (rhs) is the
polarization charge density from φ0

Coul, cf equation (3),
and δ(3)(r) is the three-dimensional Dirac function (which
constitutes the unit source charge of φ0

Coul). Equivalently, φ0
Coul

is in Fourier space given by

φ̃0
Coul(k) = φ̃Coul(k)

ε̃(k)
, (7)

which according to equation (4) gives the total potential
φ0

Coul(r) in the electrolyte solution that corresponds to an
external Coulomb potential given by φCoul(r) = 1/(4πε0r).
The physical interpretation of φ0

Coul(r) is that it constitutes the
(normalized) screened Coulomb potential from a point charge
q in the weak field limit, i.e.

φ0
Coul(r) = lim

q→0

ψ[q](r)
q

, (8)

where ψ[q](r) is the total electrostatic potential at distance r
from a point charge q (a hypothetical test charge). Thus, the
potential from a point charge q immersed in an electrolyte
solution approaches qφ0

Coul(r) in the limit q → 0. Note that
the three definitions of the screened Coulomb potential φ0

Coul
in equations (6)–(8) are mathematically equivalent and define
φ0

Coul(r) for all r . We shall denote φ0
Coul as the unit screened

Coulomb potential.
The electrostatic potential from a finite point charge q

immersed in the electrolyte solution is not equal to qφ0
Coul(r)

3



J. Phys.: Condens. Matter 20 (2008) 494209 R Kjellander and R Ramirez

Table 1. The behaviour of the electrostatic potential from a particle in the various cases covered in this paper for low to moderate electrolyte
concentrations. In the table ‘=’ means that the expression holds for all r , while ‘∼’ means that the expression shows the asymptotic decay for
large r . The ordinary (unscreened) Coulomb potential is shown in the second column (the case of vacuum), while the screened Coulomb
potential is shown for the other cases. The relative permittivity (dielectric constant) of the pure solvent is εr. The quantity Er is the effective
permittivity of the electrolyte solution (defined in equation (20)). The bare net charge of a particle of species i is denoted qi , the dipole
moment µi and the quadrupole moment Θi . The corresponding effective quantities, defined in equations (36)–(38), are denoted q0

i , µ0
i and

Θ0
i . The Debye screening parameter is denoted κD (the Debye length is κ−1

D ), while κ is the actual screening parameter of the electrolyte
solution (κ �= κD). Except for the last two rows, the results are strictly valid only in the absence of dispersion interactions (and other power
law nonelectrostatic interactions) between the particles. In the last two rows, the coefficients L QQ and �QN (defined in equations (64)
and (60), respectively) depend on the strengths of both the dispersion and electrostatic interactions.

Electrostatic potential

In vacuum In pure solvent In electrolyte solution

Poisson–Boltzmann approximation
Unit (screened) Coulomb potential = 1

4πε0r = 1
4πεrε0r

a = e−κDr

4πεrε0r

Potential ψi(r) from a simple ion = qi
4πε0r = qi

4πεrε0r
b ∼ q0

i e−κDr

4πεrε0r

Primitive model, exact results
Unit (screened) Coulomb potential = 1

4πε0r = 1
4πεrε0r

a ∼ e−κr

4πErε0r

Potential ψi(r) from a simple ion = qi
4πε0r = qi

4πεrε0r
b ∼ q0

i e−κr

4πErε0r

With molecular solvent, exact results
Unit (screened) Coulomb potential = 1

4πε0r ∼ 1
4πεrε0r ∼ e−κr

4πErε0r

Potential ψi(r) from a simple ion = qi
4πε0r ∼ qi

4πεrε0r
b ∼ q0

i e−κr

4πErε0r

Potential ψi(r) from a moleculec ∼ qi
4πε0r ∼ qi

4πεrε0r ∼ [q0
i +κµ0

i ·r̂+ κ2
3 Θ0

i :r̂r̂+···]e−κr

4πErε0r

+ µi ·r̂
4πε0r2 + · · · + µ0

i ·r̂
4πεrε0r2 + · · · + [µ0

i ·r̂+κΘ0
i :r̂r̂+···]e−κr

4πErε0r2 + · · ·
With dispersion interactions between ions, exact results
Unit screened Coulomb potential ∼ − L QQ

r6

Also oscillatory exponential terms
Potential ψi(r) from a simple ion ∼ nq�QN

εrε0r6

Also oscillatory exponential terms

a Basic assumption in the primitive model where the solvent is treated as a dielectric continuum.
b Potential from a single ion immersed in pure solvent.
c The analogous result holds for an electrolyte solution treated in the primitive model (both as an exact result and in the
Poisson–Boltzmann approximation), but then for the potential from a single molecule immersed in the solution.

since the polarization response near the charge is nonlinear.
Thus the unit screened Coulomb potential is not the potential
from a unit point charge since such a charge is not small.
For long distances from the charge where the weak field
limit applies, the potential from a point charge q is usually
proportional to φ0

Coul(r) and asymptotically we have ψ[q](r) ∼
q0φ0

Coul(r) when r → ∞, where the prefactor q0 in general
is different from q . (In cases where φ0

Coul(r) is oscillatory,
e.g. for high electrostatic coupling in the electrolyte, the phase
of ψ[q](r) is generally different from that of φ0

Coul(r) but the
decay is otherwise the same for large r .)

Likewise, a simple spherical ion of species j with charge
q j in the electrolyte solution gives rise in general to a total
electrostatic potential ψ j (r) which is proportional to φ0

Coul(r)
for large r , i.e.

ψ j (r) ∼ q0
jφ

0
Coul(r) (9)

when r → ∞ (the same comment about the phase applies
as for ψ[q](r)). The prefactor q0

j can be interpreted as the
effective charge of the j ion in solution. The value of
the effective charge depends on the spatial distributions and
orientations of the particles in the solution around the ion. The

polarization of the solution around the ion originates not only
from electrostatic interactions, but all kinds of interactions that
affect the relative distribution of positive and negative charges.
Exceptions from equation (9) occur when the leading term
in φ0

Coul(r) for large r for some reason is cancelled in ψ j (r)
and a higher order term gives the leading decay of ψi (r). An
example is a state of the system where the effective charge of
the i ion is zero.

Consider now any particle of species i (an ‘i particle’) in
an electrolyte solution. It can have any size, shape and internal
charge distribution. If the particle is a flexible molecule we
consider the molecule in a certain, but arbitrary conformation.
Let us place the origin of the coordinate system at the centre of
mass of the particle. We shall henceforth refer to this particle
as the ‘central’ one. The internal charge density distribution of
the central i particle is denoted σi (r;ω), where the symbol ω
denotes the orientation of the particle relative to the coordinate
system and, when the particle is a flexible molecule, ω also
contains information about conformation of the molecule. The
bare (net) charge qi and dipole moment µi of the particle are

4
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given by

qi =
∫

ds σi(s;ω)

µi(ω) =
∫

ds σi(s;ω) s

(10)

and analogously for the quadrupole and higher moments.
The average charge density distribution at position r in the

solution around the central i particle is denoted ρex
i (r;ω) (the

superscript ex = excess stands for ‘in excess of the internal
density’). This charge density can be calculated from the pair
distribution functions between species i and all species present
in the electrolyte solution. It constitutes the charge density of
the ‘ion and solvent cloud’ that surrounds the particle. The total
charge density distribution of the particle and its surrounding
cloud is

ρi (r;ω) = σi (r;ω)+ ρex
i (r;ω). (11)

The condition of local electroneutrality dictates that
∫

duρi

(u;ω) = 0. Note that ρex
i contains both the linear and

nonlinear electrostatic polarization response of the electrolyte
due to the internal charges of the particle as well as the
polarization response to all other interactions with the particle.
The charge density ρex

i (r;ω) is in general nonzero even when
σi (r;ω) = 0 and, for example, even when the nonelectrostatic
interaction with the particle is just a hard core exclusion
potential. In fact, any asymmetry between positive and
negative charges for the ions and solvent molecules in the
electrolyte solution gives rise to a nonzero ρex

i even when the
particle is an uncharged hard sphere.

The total electrostatic potential ψi from an i particle is
given by Coulomb’s law as

ψi (r12;ω) =
∫

dr3 ρi (r13;ω)φCoul(r32). (12)

It depends on the direction of r12 for a fixed orientationω of the
particle. A major task in this paper is to describe properties of
this potential in various cases. (Note that the potential ψ[q](r)
above is a special case where σ corresponds to a point charge
at the origin.)

In pure solvent the unit screened Coulomb potential
decays for large r like [22, 23]

φ0
Coul(r) ∼ φCoul(r)

εr
= 1

4πεrε0r
(pure solvent) (13)

where εr is the dielectric constant of the solvent, εr = ε̃(0).
For small r the functional dependence is more complicated and
depends on the values of ε̃(k) for nonzero k, cf equation (7).
The total electrostatic potential from a single i particle
immersed in pure solvent decays like

ψi (r;ω) ∼ qiφ
0
Coul(r) = qi

4πεrε0r
(single particle in pure solvent) (14)

when r → ∞. The effective charge of the particle is hence
equal to the bare charge in this case. The oriented solvent
molecules that surround the particle do not contribute to the
effective charge (i.e. the effective net charge) since they are
electroneutral. They only contribute to dielectric screening of

charges at long distances via the dielectric constant, i.e. the
linear part of the polarization response contained in φ0

Coul.
Note that equation (14) holds irrespective of how strongly
the solvent molecules are oriented near the particle, i.e. even
if nonlinear polarization effects like dielectric saturation are
important there. The nonlinear response does, however,
contribute to an effective dipole moment of the particle, which
in general is not equal to the bare µi . The dipolar potential
decays like r−2 and does not contribute to the leading term
shown in equation (14). The latter therefore does not depend
on the direction of r. The potentials from the corresponding
higher multipoles of the particle and the induced distribution
do not contribute either to the leading term. These potentials
decay even faster, exactly like in the multipole expansion of the
potential from a charge distribution in vacuum.

In electrolyte solutions the corresponding results are, as
we shall see in the remainder of this paper, entirely different.
Furthermore, the nature of the short-ranged nonelectrostatic
part of the interactions can make a difference in the qualitative
behaviour of the electrostatic potential. If the nonelectrostatic
interactions decay like a power law, e.g. a dispersion r−6

potential, we have one behaviour, and if they decay faster than
a power law, e.g. an exponentially decaying or a finite-range
potential (like a hard core or square well potential), we have a
different behaviour.

3. Electrolytes with very short-ranged
nonelectrostatic part of the intermolecular
interactions

We start by considering model electrolytes where all molecules
in the solution interact with electrostatic and short-ranged pair
interactions, where the latter decay with r faster than any
power law. The simplest example is the primitive model
of electrolytes. More elaborate examples are ‘civilized’
model electrolytes where the solvent molecules are explicitly
included, e.g. as hard bodies with electric dipoles and/or
multipoles. The treatment also includes any model of
charged and uncharged molecules with arbitrary internal
charge distributions and of any size and shape, provided
there are no nonelectrostatic interactions that decay for large
separations like a power law. This includes finite range
potentials and exponentially decaying potentials, provided
the decay length is shorter than that of the pair distribution
functions. All models with, for example, Lennard-Jones
potentials are however excluded here. Their treatment is
postponed to section 4.

Our analysis of electrostatic interactions in [7, 12], on
which the present study is built, was restricted to rigid
molecules with any size, shape and internal charge distribution.
We here extend the analysis to flexible molecules. All results
derived in [7, 12] for rigid molecules are also valid for flexible
ones provided the following changes are made: a flexible
molecule in a particular conformation is formally regarded as
a separate rigid species with a certain concentration. The same
molecule in different conformations (different conformers) is
thereby regarded as a mixture of different rigid species with
different concentrations. The condition that makes all these

5
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species correspond to the same actual molecule is that the
concentration of each conformer is such that the chemical
potential of all conformers is the same. The intramolecular
interaction energy is included in the chemical potential. Since
the results in our previous work are valid for mixtures of rigid
particles with any shape and internal charge distribution, the
only change necessary is to increase the number of species
and have appropriate concentrations. (We use here the symbol
ω to denote the orientation of a rigid molecule relative to
the laboratory frame and to denote the conformer and its
orientation for a flexible molecule. By using the analogous
notation in [7] for the foundations of the theory, where ω only
denotes orientation, one can make the theory applicable to both
the rigid and flexible cases.)

Note that the general formulae in this section are for
systems with molecular solvent. In the primitive model the
Coulomb potential is φCoul/εr rather than φCoul. When we
apply the general formulae in this model we will therefore have
to insert factors of εr in appropriate places.

3.1. Yukawa function decay of the screened Coulomb potential

For the systems considered here the unit screened Coulomb
potential, as defined in section 2, decays for large r like [7]

φ0
Coul(r) ∼ e−κrφCoul(r)

Er
= e−κr

4πErε0r
, (15)

where Er is an effective relative permittivity of the electrolyte
solution (Erε0 is an effective permittivity). This asymptotic
result holds provided the electrolyte concentration is not too
high (the range of validity depends on the system). In the limit
of infinite dilution of the electrolyte we have

φ0
Coul(r) ∼ e−κDrφCoul(r)

εr
= e−κDr

4πεrε0r
(infinite dilution)

(16)
when r → ∞, where κD is the Debye screening parameter and
κ−1

D is the Debye length defined from

κ2
D = β

εrε0

∑
j

n j q
2
j (17)

where εr is the dielectric constant of the pure solvent, β =
(kBT )−1, kB is Boltzmann’s constant, T is the absolute
temperature and n j is the number density of species j in the
electrolyte solution. In equation (15) we have κ �= κD and
Er �= εr, but from the infinite dilution result it follows that
κ/κD → 1 and Er/εr → 1 when the electrolyte concentration
goes to zero. In pure solvent (where κ = κD = 0)
equations (15) and (16) become equal to equation (13).

Let us first consider a solution of simple electrolytes,
i.e. where the ions are small and spherical. In the PB
approximation, which is a based on the primitive model but
where the ion–ion correlations in the ion cloud around each
ion are ignored (a mean field approximation), we have

φ0
Coul(r) = e−κDrφCoul(r)

εr
= e−κDr

4πεrε0r
(PB) (18)

for all r and for any electrolyte concentration (both in the
nonlinear and the linearized PB approximations). This is to
be compared with the exact result (16) at infinite dilution,
which is valid in the presence of molecular solvent but only
asymptotically for large r . One should also compare with
equation (15). While equation (18) is valid only in the PB
approximation, equation (15) is an exact result both for the
primitive model and for an electrolyte with molecular solvent.

In the PB approximation the dielectric function, equa-
tion (5), is given by

ε̃(k)

εr
= 1 + β

∑
j

n j q
2
j

φ̃Coul(k)

εr
= k2 + κ2

D

k2
(PB). (19)

Here ε̃(k)/εr is the dielectric function relative to a dielectric
continuum with dielectric constant εr (as used in the primitive
model) and ε̃(k) is the usual one (in vacuum).

For completeness we mention that the results (15), (16)
and (18) can be inferred mathematically from the fact that a
Yukawa function exp(−κr)/r decay of a function f (r) when
r → ∞ corresponds to a simple pole of f̃ (k) in complex k
space at k = iκ , where i is the imaginary unit. (See [24]
for a lucid description of the relationship between the long-
range asymptotic behaviour and singularities in k space.) From
equation (7) we see that φ̃0

Coul(k) has a pole when ε̃(k) = 0 and
hence the exp(−κr)/r decay corresponds to ε̃(iκ) = 0. (The
zero of the rhs of equation (19) at k = iκD is obvious.) In
general, the singularity of φ̃0

Coul(k) in complex k space that lies
closest to the real axis (the ‘leading singularity’) determines
the leading asymptotic term of φ0

Coul(r) when r → ∞. Thus,
when the pole at k = iκ is the leading singularity, φ0

Coul(r)
decays like exp(−κr)/r . From these facts one can show that
the factor Er in the denominator of equation (15) is given by

Er =
[

k

2

dε̃(k)

dk

]
k=iκ

(20)

which follows from residue calculus.
For a solution of a simple electrolyte with molecular

solvent, the decay parameter κ is given by the expression [7]

κ2 = β

ε0

[ ∑
j∈ions

n j q j q
0
j + ns〈σ̃sρ̃

0
s 〉ω

]

k=iκ

(21)

where the sum is over the ionic species (cf equation (17))
and q0

j is the effective charge of a j ion (cf equation (9)).
In the second term, which contains the solvent contributions
(index s = solvent), ns is the number density of solvent
molecules, σ̃s is the Fourier transform of the internal charge
density of a solvent molecule, ρ̃0

s is the Fourier transform of the
renormalized charge density (to be defined later, equations (27)
and (28)) of the same solvent molecule, the underline means
the complex conjugate and 〈·〉ω denotes the average over
all orientations of the molecule (and, when appropriate,
all conformations weighted according to their probability).
Note that the rhs of equation (21) depends on κ , so the
expression is an equation for κ that, in fact, is equivalent
to ε̃(iκ) = 0. The contribution from the solvent molecules
in this equation transcends the solvent dielectric properties;

6
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ρ0
s contains contributions from the ions around each solvent

molecule and q0
j contains contributions from the solvent.

One can write equation (21) in a different, but equivalent,
manner that is more similar to its limiting form at infinite
dilution, equation (17). By separating out a part of the
dielectric function that only involves solvent molecules,
ε̃polar(k), one can show that [7]

κ2 = β

ε̃polar(iκ)ε0

[ ∑
j∈ions

n j q j q
0
j + ns

〈
σ̃sρ̃

0,ions
s

〉
ω

]

k=iκ

,

(22)
where ρ0,ions

s is the part of the renormalized charge density of a
solvent molecule that originates from the ions (for definitions
of ε̃polar and ρ0,ions

s and other details see [7]). In the limit of
infinite dilution, ε̃polar(k) → ε̃(k) for the pure solvent, and
since κ → 0 it follows that ε̃polar(iκ) → εr, the dielectric
constant for the solvent. Furthermore, q0

j → q j and ρ0,ions
s →

0 in this limit, so equation (22) yields equation (17). Note
that at finite electrolyte concentrations ε̃polar is evaluated at
k = iκ and not at k = 0. Physically this means that
one considers the dielectric response due to an exponentially
decaying electrostatic field rather than a uniform one.

In the primitive model the expression corresponding to
equations (21) and (22) is [6]

κ2 = β

εrε0

∑
j∈ions

n j q j q
0
j . (23)

The similarity to the definition of κD in equation (17) is
obvious, and since the effective ionic charge q0

j is different
from the bare charge q j it is readily seen that κ �= κD, as
inferred above.

As we have seen in equation (9), the total potential from
a simple ion in an electrolyte solution is proportional to the
unit screened Coulomb potential φ0

Coul(r) with the effective
charge q0

j as the prefactor with q0
j �= qi . This holds in the

PB approximation as well as in the exact analysis. The reason
that the decay parameter in the PB approximation is given by
equation (17) rather than equation (23) is that the ions that
surround the central ion are treated like point ions that do not
correlate with each other. Only the central ion (of species i ) has
an effective charge that is different from its bare charge, while
for all other ions q0

j = q j in the PB approximation. The latter
ions determine the screening. Thus it is the different treatment
of the other ions compared to the central ion that makes κ = κD

in the PB approximation.
The deviation of q0

i from qi for the central ion is a
consequence of the facts that it attracts counterions and repels
coions and that all ions are excluded from its interior. In the
linearized PB approximation (the Debye–Hückel theory) it is
only the exclusion effect that gives rise to this deviation and we
have q0

i = qi exp(κDa)/(1 + κDa), where a is the radius of the
excluded volume around the central ion. In the nonlinear PB
approximation all of these effects contribute and q0

i depends in
a quite complex nonlinear fashion on qi . In the exact case the
dependence of q0

i on qi and other system parameters are even
more complex since the value of q0

i is influenced by the many-
body correlations that are neglected in the PB approximation.

Figure 1. A dipole consisting of two charges +q and −q separated
by the vector a. Its dipole moment is µ = qa. The electrostatic
potential is calculated at a point that lies at distances r ′ and r ,
respectively, from the charges.

Since all ions are then treated in the same manner, all ions of
the same species have the same effective charge and κ �= κD.

As we are now going to see, in the presence of molecular
solvent it is not only the ions that give contributions to the
effective charge, but also the solvent molecules. This may
seem strange, since the solvent molecules are electroneutral
and cannot give any contribution to a net charge. However,
it is not the Coulombic charge of the molecules that matters in
electrolytes, but rather a different entity that we will call the
‘Yukawa charge’ of the molecule.

3.2. How can an electroneutral molecule contribute to a net
effective charge?

What does it mean that an electroneutral molecule gives
a contribution to the effective charge of a particle in an
electrolyte solution? We shall see that electrostatic potential
from an ion and from a polar molecule in the cloud around
the particle decays with distance in exactly the same way.
Therefore, both contribute to the leading term in the potential
far from the particle and thereby affect the value of the effective
charge.

To see this, consider the potential from a dipole with the
dipole moment µ = qa as depicted in figure 1. In pure
solvent (κ = 0) the Coulomb potential at a point located at
the distance r ′ from the positive charge (+q) and distance r
from the negative (−q) is proportional to

q

r ′ − q

r
∼ qa · r̂

r 2
= µ · r̂

r 2
when r → ∞,

which is the normal dipolar term (r̂ = r/r is the unit vector in
the direction of r). The potential decays faster than that from
a charge since the inverse distance contributions from the two
charges cancel exactly for large r .

In electrolytes (κ �= 0), where the potential from a point
charge decays like a Yukawa function, the potential from the

7
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dipole is proportional to

qe−κr ′

r ′ − qe−κr

r
∼ qe−κr

r

[
eκa·r̂ − 1

]
when r → ∞.

The two Yukawa function contributions do not cancel and they
give a contribution that decays equally fast as the potential
from a charge, i.e. proportionally to exp(−κr)/r . The
rhs depends on the direction of r̂, but there is a direction
independent part which can be found by taking the average
over all directions of r̂. The average of exp(κa · r̂) is equal
to sinh(κa)/(κa), so the dipole gives the same contribution to
the potential as a point charge q[sinh(κa)/(κa)− 1].

Thus it is not the Coulombic charge of a molecule that
matters but a different entity, which we shall call the Yukawa
charge of the molecule. The dipole in figure 1 has the ‘bare
Yukawa charge’

q� = q

[
sinh(κa)

κa
− 1

]
. (24)

This dipole also gives contributions to the potential with the
same direction dependence as an ordinary dipole potential.
One can show that

qe−κr ′

r ′ − qe−κr

r
∼ [

q� + κµ� · r̂ + · · ·] e−κr

r

+ [
µ� · r̂ + · · ·] e−κr

r 2
+ · · · when r → ∞, (25)

where the bare ‘Yukawa dipole moment’ is

µ� = µ

[
3 cosh(κa)

(κa)2
− 3 sinh(κa)

(κa)3

]
(26)

and where the expansion continues with quadrupolar and
higher multipolar terms. These higher moments have similar
hyperbolic factors as in equations (24) and (26). When κ → 0
an ordinary multipole expansion of the potential is obtained,
q� → 0 and µ� → µ (note the factor κ in front of the first µ�

in equation (25)).
A very important difference between equation (25) and

the ordinary multipole expansion is that the leading term that
decays like exp(−κr)/r contains contributions from all orders
of multipole moments. The second leading term exp(−κr)/r 2

starts with a dipolar term and continues with all higher
order multipole moments. The next term exp(−κr)/r 3 (not
shown) starts with a quadrupolar term etc. Thus the direction
dependence of the potential continues out to the far field region,
which is very different from the case in pure solvent and in
vacuum, where in the general case the spherically symmetric
1/r term from the net charge is the only contribution that
survives far away. For a dipole it is only the dipolar term that
survives far away in these cases.

Another difference between equation (25) and the ordinary
multipole expansion is the following. In the ordinary
expansion the lowest order nonzero multipole is independent
of where we put the origin, while all higher order multipoles
depend on this choice. For the Yukawa potential multipoles, all
moments depend on the choice of origin including the lowest
order one. If we selected to put the origin in figure 1 at the

charge +q instead of −q the sign of q� would be reversed,
and if we put the origin at the midpoint between the charges
we would have q� = 0. Since the oriented solvent molecules
in the cloud surrounding a particle are normally located at off-
centre positions relative to the particle, they will contribute to
the net effective charge of the particle counted from its centre.
Of course, these matters are equally relevant for contributions
from solute molecules that surround the particle.

3.3. Renormalized charge density of molecules

The total electrostatic potential from a particle in solution
consists of the potential from the particle itself and from
particles in its surroundings. We have seen that the potential
from a charge propagates in space according to the unit
screened Coulomb potential φ0

Coul(r), at least in the weak field
limit. Furthermore, we saw in the previous subsection that the
application of the screened Coulomb potential has important
implication for the qualitative behaviour of the potential from
a particle in electrolytes. If we want to apply φ0

Coul(r) for
calculation of the total electrostatic potential due to a particle,
how do we proceed? Since φ0

Coul(r), which we have defined for
all r , expresses the linear part of response due to charges (more
specifically, the self-consistent response to the total potential),
there must be some means to treat the nonlinear part of the
response to the interactions with the particle. This is where
charge renormalization of particles comes in. As we shall see,
the renormalization tells us how to include particles from the
‘ion and solvent cloud’ around each particle without double-
counting the contributions already taken care of by φ0

Coul.
Let us consider a particle of species i immersed in an

electrolyte solution and placed fixed at the origin and with a
fixed orientation (and conformation) symbolized by ω. It is
surrounded by a charge density of its cloud equal to ρex

i (r;ω)
and the total charge density ρi (r;ω) is given by equation (11).
The electrostatic potential ψi (r;ω) due to the particle is given
by a simple application of Coulomb’s law, equation (12). (If we
consider a particle immersed in a primitive model electrolyte
φCoul should be replaced by φCoul/εr.)

Our task is to express the potential ψi (r;ω) in terms of
the unit screened Coulomb potential, φ0

Coul(r), rather than the
unscreened one, φCoul(r). We want to keep the same simple
form of the expression for ψi as Coulomb’s law. To achieve
this, we cannot, of course, simply insert φ0

Coul instead of φCoul

in equation (12). The charge density must also be changed in
order to give the same potential ψi . We therefore set

ψi (r12;ω) =
∫

dr3 ρ
0
i (r13;ω)φ0

Coul(r32) (27)

where ρ0
i , the renormalized charge density, is unambiguously

defined from this equation. Note that equation (27) yields
ψi (r12;ω) for all r12 values and that ψi (r12;ω) is exactly the
same in equations (12) and (27). Remember that φ0

Coul(r32)

is defined for all r32 by equation (8) (or equivalently by
equation (6) or (7)).

The relationship between ρi and ρ0
i can be written in

Fourier space as

ρ̃0
i (k;ω) = ρ̃i (k;ω)ε̃(k), (28)

8
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which follows from ψ̃i = ρ̃i φ̃Coul = ρ̃i ε̃ φ̃Coul/ε̃ = ρ̃0
i φ̃

0
Coul,

where we have used that the integrals in equations (12) and (27)
are convolutions. For the primitive model the relationship is
ρ̃0

i = ρ̃i ε̃/εr instead of equation (28). (We should mention here
that ρ0

i can be expressed entirely in terms of ρ j and σ j for all
j because the dielectric function can be written in terms of ρ̃ j

and σ̃ j . This follows from equation (5) and the linear response
theory relation χ̃(k) = −β∑

j n j 〈σ̃ j ρ̃ j 〉ω. Incidentally, χ̃0

can be expressed in terms of ρ̃0
j and σ̃ j in exactly the same

manner, which lies behind the expression (21).)
The charge density ρ0

i (r;ω) consists of the bare charge
density σi (r;ω) of the particle and an additional charge
distribution, ρdress

i (r;ω), which is built up by the various
species in the surrounding electrolyte solution, and we have

ρ0
i (r;ω) = σi (r;ω)+ ρdress

i (r;ω). (29)

It is a nontrivial fact [6, 7] that ρ0
i (r;ω) is a more short-ranged

function than ρi (r;ω) (provided, as before, that we avoid
systems that are close to critical states and systems with very
strong screening. i.e. very short screening lengths). We denote
ρdress

i (r;ω) as the ‘dress’ of the particle and it constitutes an
unambiguously defined, short-range part of ρex

i (r;ω). The
particle and its dress will be denoted as a ‘dressed particle’,
which accordingly has the charge distribution ρ0

i (r;ω).
One can show that [6, 7]

ρex
i (r12;ω) = ρdress

i (r12;ω)+
∫

dr3ψi (r13;ω)χ0(r32) (30)

where χ0 is the same response function as in equation (3). The
integral is the linear part of the polarization response to the total
potential ψi from the central i particle. This term constitutes
the part of ρex

i that is not contained in ρdress
i . It follows that

ρdress
i contains the charge density due to the nonlinear part

of the polarization response. By adding σi to both sides of
equation (30) we obtain the same relationship between ρi and
ρ0

i , that is ρi = ρ0
i + ∫

ψiχ
0.

In the PB approximation this relationship between ρi and
ρ0

i becomes particularly simple and can be written ρ0
i (r;ω) =

ρi (r;ω) + ε0εrκ
2
Dψi (r;ω), where ψi and ρi in this case can

be determined by solving the nonlinear PB equation. Since
φ0

Coul(r) is equal to a Yukawa function for all r in the PB
approximation, equation (18), we have from equation (27)

ψi (r12;ω) = 1

4πεrε0

∫
dr3 ρ

0
i (r13;ω)e−κDr32

r32
(PB) (31)

i.e. ψi written as a superposition of Yukawa function
contributions for all r12 values. As mentioned earlier, in the
PB approximation the ions in the cloud around the central i
particle are treated like point ions that do not correlate with
each other, which is the reason for the simplicity of this case.

In the exact treatment all particles are treated on the same
fundamental level. Then, ψi is equal to a superposition of
Yukawa potential contributions for large r12 values only, i.e.

ψi (r12;ω) ∼ 1

4πErε0

∫
dr3 ρ

0
i (r13;ω)e−κr32

r32
(32)

when r12 → ∞, cf equation (15). Here it is equation (27) that
gives ψi for all r12 values, but then one must use φ0

Coul(r32) for
all r32, which is not a simple Yukawa function for small r32.

3.4. The asymptotic expansion of the electrostatic potential

From equation (32) one can show [12] that the leading
contribution to ψi (r;ω) for large r is

ψi (r;ω) ∼ a(1)i (r̂;ω) e−κr

4πErε0r
(33)

where

a(1)i (r̂;ω) =
∫

ds ρ0
i (s;ω) exp(−κs · r̂), (34)

(a Laplace transform), which gives the coupling between the
renormalized charge density and an exponentially varying
potential field in the direction r̂. Furthermore,

a(1)i (r̂;ω) = q0
i + κµ0

i (ω) · r̂ + κ2

3
Θ0

i (ω) : r̂r̂ + · · · (35)

where ‘:’ denotes double contraction and the effective Yukawa
charge and dipole and quadrupole moments of the dressed
particle are given by

q0
i =

∫
ds ρ0

i (s;ω)
sinh(κs)

κs
(36)

µ0
i (ω) = 3

∫
ds ρ0

i (s;ω)s
[

cosh(κs)

κ2s2
− sinh(κs)

κ3s3

]
(37)

Θ0
i (ω) = 15

2

∫
dsρ0

i (s;ω)(3ss − s21)

×
[

sinh(κs)

κ3s3
− 3

cosh(κs)

κ4s4
+ 3

sinh(κs)

κ5s5

]
. (38)

The next term in ψi (r;ω) decays like exp(−κr)/r 2 and we
have

ψi (r;ω) ∼ e−κr

4πErε0

[
a(1)i (r̂;ω)

r
+ a(2)i (r̂;ω)

r 2
+ · · ·

]

when r → ∞, (39)

where

a(2)i (r̂;ω) = µ0
i (ω) · r̂ + κΘ0

i (ω) : r̂r̂ + · · · . (40)

The analogy to the case of a single dipole, equation (25), is
obvious, and we see that the definitions (24) and (26) are
special cases of equations (36) and (37). In equation (39)
the subsequent term, which decays like exp(−κr)/r 3, starts
with the quadrupolar term in the expansion of a(3)i (r̂;ω). The
coefficients a(l)i (r̂;ω) for all l can also be expressed as integrals
of ρ0

i [12].
When κ → 0 (vanishing electrolyte concentration) only

the charge term in a(1)i (r̂;ω) and the dipolar term in a(2)i (r̂;ω)
survive and give the corresponding terms in the Coulombic
multipole expansion (the same applies for the higher order
terms not shown). In this limit q0

i → ∫
ds ρ0

i (s;ω) =∫
dsσi (s;ω) = qi since electroneutral molecules in the dress

do not give any contribution to the integral of ρ0
i . On the

other hand, we have µ0
i (ω) → ∫

ds sρ0
i (s;ω), which is not

equal to µi(ω) = ∫
ds sσi(s;ω), since we in general obtain a

contribution from the dipolar moment of the dress. The higher
order moments behave analogously.

9
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In electrolyte solutions, κ �= 0, the leading term (33) of the
electrostatic potential at long distances contains contributions
from all multipole moments, equation (35). Hence the effects
of anisotropy of the central particle and its surrounding charge
distribution survive far away from the molecule. This is
radically different from the situation in pure solvent and in
vacuum, where only the contribution from the highest nonzero
multipole survives, e.g. the leading term for large r from an
anisotropic charged particle is the isotropic r−1 contribution,
while the dipolar contributions decay faster and the multipolar
still faster.

Furthermore, the effective Yukawa charge and multipole
moments of a particle in an electrolyte contain contributions
from all kinds of charged and/or polar molecules in its dress.
This includes contributions from electroneutral polar particles
to the effective Yukawa charge as a special case. When the
screening length κ−1 is large compared to the molecular size
the contributions from electroneutral particles are small, but
since there are many solvent molecules around a particle the
contributions add up to a non-negligible number when κ−1

approaches the molecular size. Furthermore, polar solute
molecules, when present, also contribute in the same manner.

3.5. The interaction free energy between two molecules in
electrolytes

The renormalized charge density ρ0
l also has a fundamental

role in the interaction between two particles of species i and
j in an electrolyte solution. The appropriate entity here is the
pair potential of mean force wi j between the molecules or, in
other words, the interaction free energy. The pair distribution
function is given by gi j = exp(−βwi j). As shown in [7],
the screened electrostatic part of the potential of mean force,
wel

i j , can be written as the interaction between the renormalized
charge distributions ρ0

i and ρ0
j of the molecules as mediated by

the unit screened Coulomb potential

wel
i j(r12;ω1, ω2) =

∫
dr3 dr4 ρ

0
i (r13;ω1)φ

0
Coul(r34)ρ

0
j (r24;ω2),

(41)
where the centres of the two molecules are separated by
r12 and they have orientations (and conformations) specified
by ω1 and ω2. This expression has the same formal
appearance as an electrostatic interaction energy between two
charge distributions expressed with Coulomb’s law. It can
alternatively be written

wel
i j(r12;ω1, ω2) =

∫
dr4 ψi (r14;ω1)ρ

0
j (r24;ω2)

=
∫

dr3 ρ
0
i (r13;ω1)ψ j (r23;ω2), (42)

which has the form of an interaction energy expressed in
terms of the electrostatic potential from one molecule and the
renormalized charge density of the other. The interaction free
energywel

i j is a distinct contribution to the completewi j , which
can be written for all r12 as [7]

wi j(r12;ω1, ω2) = ushort
i j (r12;ω1, ω2)+w0

i j (r12;ω1, ω2)

+ wel
i j (r12;ω1, ω2), (43)

where ushort
i j is the short-range nonelectrostatic part of the pair

potential between the i and j molecules and w0
i j contains the

pair bridge function and a term that only involves the short-
range correlation functions for the dresses of the molecules.

If the electrolyte concentration is not too high and the
screening length therefore not too short, wel

i j decays more
slowly with distance than w0

i j and ushort
i j [6, 7]. The former

contribution then dominates for large separations and we have
wi j(r12;ω1, ω2) ∼ wel

i j (r12;ω1, ω2) when r12 → ∞. The
leading term of wi j for large r12 then is

wi j(r12;ω1, ω2) ∼ 1

4πErε0

∫
dr3 dr4 ρ

0
i (r13;ω1)

× e−κr34

r34
ρ0

j (r24;ω2), (44)

where we have inserted the leading Yukawa function term of
φ0

Coul(r34) inwel
i j . While this equation is valid for large r12 only,

equation (43) with wel
i j from equation (41) is valid for all r12.

Note that equations (41)–(43) bring an illustrative
perspective on the assumptions in the PB approximation. In
this approximation one sets wel

i j = ψi q j and wi j = ushort
i j +

wel
i j . Thereby, one has made two approximations: (i) that

wel
i j constitute the entire wi j apart from ushort

i j and (ii) that
ρ0

j is replaced by a point charge q j in the first equality of
equation (42) or, equivalently, in equation (41). Thus, only
the i particle has a dress (the central particle), while all
other particles are assumed to be undressed point ions. As a
consequence wi j �= w j i in general, while in the correct theory
we have wi j = w j i as required. We have already seen several
other consequences of this approximation.

The potential of mean force can in the general case also
be expressed in terms of the Yukawa charge and multipole
moments. When the screening length is not too short the
leading contribution decays for large separation like [7]

wi j(r;ω1, ω2) ∼ a(1)i (r̂;ω1)a
(1)
j (−r̂;ω2)

e−κr

4πε0 Err

=
[

q0
i + κµ0

i · r̂ + κ2

3
Θ0

i : r̂r̂ + · · ·
]

×
[

q0
j − κµ0

j · r̂ + κ2

3
Θ0

j : r̂r̂ + · · ·
]

× e−κr

4πErε0r
, (45)

where r points from the i molecule to the j molecule (for
clarity ω1 and ω2 are suppressed in the moments). For two
spherically symmetric particles this becomes

wi j(r) ∼ q0
i q0

j e
−κr

4πε0 Err
(46)

for large r . We havewi j(r) ∼ q0
i ψ j (r) ∼ q0

i ψ j (r) in this case,
i.e. the interaction free energy between the particles decays
like the mean potential from one particle times the Yukawa
charge of the other. The asymptotic relationships (45) and (46)
constitute the exact results that correspond to the weak overlap
approximation for the double layers of two interacting particles
in electrolytes.

10
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Note that if species i and j are at infinite dilution,
e.g. single particles immersed in an electrolyte solution with
a finite salt concentration, a(l)i (r̂;ω) for species i can be
evaluated in the absence of species j and vice versa. Their
interaction when both are present (at infinite dilution) satisfies
equation (45) with a Yukawa function decay where κ and Er

have the values of the pure bulk electrolyte solution.

3.6. Higher order terms

We have so far considered the leading term of φ0
Coul(r), which

decays like exp(−κr)/r for the systems studied here. We shall
briefly consider higher order terms that decay faster. They give
contributions to ψi and wi j that are included in equations (27)
and (41), but of course not in equations (32) and (44).

Such a contribution can be another Yukawa function term
that decays like exp(−κ ′r)/r with κ ′ > κ . This is of
special interest for instance for 1:2 electrolytes where the decay
lengths κ−1 and (κ ′)−1 have similar magnitudes in a fairly wide
concentration interval [25, 26], and we have for large r

φ0
Coul(r) ∼ e−κr

4πErε0r
+ e−κ ′r

4πE ′
rε0r

, (47)

where E ′
r is a constant analogous to Er, see below. The second

term gives contributions to ψi and wi j analogous to the rhs
of equations (32) and (44). These contributions can also be
expanded asymptotically for large r as the rhs of equations (39)
and (45), but a(l)i (r̂;ω) and the Yukawa charge and multipole
moments should be evaluated with κ replaced by κ ′ in the
respective formulae above.

Both Yukawa function contributions in equation (47)
correspond to zeros of ε̃(k) in the denominator of φ̃0

Coul(k)
in equation (7), i.e. ε̃(iκ) = 0 and ε̃(iκ ′) = 0. The factor
E ′

r in the second denominator of equation (47) is accordingly
obtained from equation (20) by inserting k = iκ ′ instead of
iκ . An interesting fact is that Er > 0 while E ′

r < 0. When
the electrolyte concentration is increased, κ and κ ′ approach
each other and finally merge. For even higher concentrations
φ0

Coul(r) becomes an exponentially damped oscillatory function
for large r , which correspond to a complex valued κ , see the
appendix.

For completeness it should be mentioned that there exist
terms in φ0

Coul(r) with other r dependences. They correspond
to singular points of φ̃0

Coul(k) in complex k space that are not
poles [6, 25]. Such a point is a singularity of ε̃(k) too and gives
rise to a term in φ0

Coul(r) that does not decay like a Yukawa
function. If the singularity occurs at a point iζ with real ζ , the
decay in r space goes like f (r) exp(−ζr) with some different
f (r). (An example is a contribution that decays like the square
of a Yukawa function, exp(−2κr)/r 2. This corresponds for
spherically symmetric functions to a logarithmic branch point
in complex k space at k = i2κ .) At least when the electrolyte
concentration is sufficiently low, such singularities only give
rise to higher order terms in φ0

Coul(r).

3.7. An alternative charge density renormalization

As an alternative to equation (27) one can in the general case
envisage a renormalized charge distribution ρ⊗

i (r;ω) defined

such that

ψi (r12;ω) = 1

4πε0 Er

∫
dr3 ρ

⊗
i (r13;ω)e−κr32

r32
(48)

holds for all r12 values with the correct ψi (r12;ω), κ and Er.
The screened Coulomb potential used would then be

φ⊗
Coul(r) = e−κr

4πErε0r
(49)

for all r and we have

ψi (r12;ω) =
∫

dr3 ρ
⊗
i (r13;ω)φ⊗

Coul(r32). (50)

One can easily show that

ρ⊗
i (r;ω) = [ρi(r;ω)+ ε0κ

2ψi (r;ω)]Er (51)

(for the primitive model we have instead ρ⊗
i = [ρi +

εrε0κ
2ψi ]Er/εr). Clearly, ρ⊗

i is much simpler to evaluate in
practice than ρ0

i . This is in particular the case for a single
particle (e.g. a macromolecule of species i ) immersed in an
electrolyte solution of known κ and Er.

Let us analogously define

w⊗
i j (r12;ω1, ω2) =

∫
dr3 dr4 ρ

⊗
i (r13;ω1)φ

⊗(r34)ρ
⊗
j (r24;ω2)

= 1

4πε0 Er

∫
dr3 dr4 ρ

⊗
i (r13;ω1)

e−κr34

r34
ρ⊗

j (r24;ω2) (52)

cf equations (41) and (44). While ψi in equation (50)
is the same as in equation (27), w⊗

i j is not the same
as wel

i j in equation (41). One can, however, show that
wel

i j(r12;ω1, ω2) ∼ w⊗
i j (r12;ω1, ω2) for large r (this follows

from w̃⊗
i j (k;ω1, ω2) = w̃el

i j(k;ω1, ω2)s̃(k), where s̃(k) =
(1+κ2/k2)Er/ε̃(k), and the fact that s̃(k) → 1 when k → iκ).
Thus we obtain the leading term of wi j correctly. This holds
provided, as stated above, that the screening length is not too
short.

An advantage with this charge distribution renormaliza-
tion is that it yields the correct electrostatic potential every-
where by applying a simple Yukawa function, but a disadvan-
tage is that it gives correctly only the leading terms with decay
length κ−1 of the screened electrostatic part of the interaction
free energy (the higher order terms with shorter decay lengths
are severely distorted from an appearance of [ε̃(k)]2 in the de-
nominator of w̃⊗

i j rather than a single factor ε̃(k)). It is only
the fundamental renormalization defined by equation (27) that
gives all terms correctly.

If one is interested only in the leading term in wi j with
decay length κ−1 one can calculate a(1)i (r̂;ω) in equation (34)
by using the alternative renormalization given by equation (51).
If one inserts ρ⊗

i instead of ρ0
i in equation (34) one obtains

exactly the same value of a(1)i (r̂;ω) (this follows from
ρ̃⊗

i (k;ω) = ρ̃0
i (k;ω)s̃(k) and the convolution theorem for the

Fourier and Laplace transforms). This route is easier to apply
and is particularly useful for the leading term of the interaction
between two single particles (e.g. macromolecules of species i
and j ) immersed in an electrolyte solution of known κ and Er.

11
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4. Electrolytes with intermolecular dispersion
interactions

4.1. Power law interactions

We shall now consider electrolytes that have contributions that
decay like power laws, r−ν , in the nonelectrostatic part of
their pair potential. The most important case is the ubiquitous
dispersion interaction between molecules that decay for large r
like r−6. In liquid models it is usually included in the molecular
interactions as a Lennard-Jones potential.

For systems of uncharged particles with pair interactions
that decay like r−ν with ν > 3 it is known [27, 28] that their
pair correlations h(r) also decay like r−ν . More precisely,
if the pair potential u(r) ∼ −γ r−ν , where γ is a constant,
then h(r) ∼ β K 2γ r−ν . The constant K is dimensionless and
proportional to the isothermal compressibility χT

K = kBT nχT = kBT

(
∂n

∂P

)
N,T

(53)

where P is the pressure and N is the number of particles (we
assume here as in the rest of the paper that we are not at
criticality of the fluid).

This decay law for the correlation function also holds
for an electrolyte [15]. If the nonelectrostatic interactions
between the ions in a simple electrolyte decay like −γi jr−ν
for large r then hi j(r) ∼ βK 2γN N r−ν , where γN N is a linear
combination of γi j (to be defined below). This means that in
the presence of power law interactions the ultimate decay of
the pair correlations in an electrolyte is a power law rather than
an exponential decay. When γi j and/or the compressibility is
large, the r−ν tail of hi j(r) is large. (In the primitive model
of electrolyte solutions the number density we consider here is
the ionic concentration and the pressure and compressibility
refers to the ionic species only. We will for simplicity not
treat solvent as a molecular species in this section and we will
restrict ourselves to binary simple electrolytes. For a plasma
consisting only of charged particles we consider, however, the
total number density n, pressure and compressibility of the
plasma.)

The presence of an r−ν term in the pair interactions
generates a multitude of power law contributions r−η with
η > ν in the pair correlations; contributions that decay faster
with r . Since the leading contribution β K 2γN N r−ν to the pair
correlation function hi j(r) is equal for all species of ions it does
not contribute to the charge density around the ions ρex

i (r) =∑
j q j n j hi j(r) since

∑
j q j n j = 0 from electroneutrality.

Thus ρex
i (r) decays faster to zero when r → ∞. To see

how the charge density behaves it is very useful to introduce
the ionic density–density, charge–charge and charge–density
correlation functions hN N (r), hQQ(r) and hQN (r) (for
a primitive model electrolyte solution they express the
ionic concentration–concentration, charge–charge and charge–
concentration correlations). In the density–density correlations
one considers the spatial correlations in total number density of
particles (irrespectively of species). Likewise, in the charge–
charge and charge–density correlations all charges contribute
in the same manner irrespectively of which species they belong

to; only the magnitude and sign of the charges matter. For a
binary electrolyte we have

hN N = θ2
+h++ + 2θ+θ−h+− + θ2

−h−−

hQQ = 1
4 [h++ − 2h+− + h−−]

hQN = hN Q = 1
2 [θ+h++ + (θ− − θ+)h+− − θ−h−−]

(54)

where θi = ni/n is the fraction of i ions and n = n+ + n− is
the total ionic number density. (This equation will also be used
for γi j to define γN N , γQN and γQQ .) Conversely, we have

hi j = hN N + (ti + t j)hQN + ti t j hQQ (55)

where tl = ql/qQ and qQ = (q+ + |q−|)/2. We see
from equation (55) that the species dependent contributions
in hi j(r) come from the hQN (r) and hQQ(r) terms while the
contribution from hN N (r) is the same for all species. The
decay of hi j(r) we mentioned above originates from the fact
that hN N (r) ∼ βK 2γN N r−ν in the presence of the power law
interaction.

The charge density ρex
i (r) can written as

ρex
i (r) = nq

(
hQN (r)+ qi

qQ
hQQ(r)

)
(56)

where q = (n+q+ + n−|q−|)/n. Here we see that the
contribution from the term with hQQ(r) depends on the sign
of the ionic charge while that from hQN (r) is the same for
anions and cations. Note that the relationships (54)–(56) hold
for binary electrolytes irrespectively of the pair interactions.

In the present case with power law interactions, hN N (r),
hQN (r) and hQQ(r) decay in general like r−ν , r−(ν+2) and
r−(ν+4) respectively [15] when the nonelectrostatic part of the
pair potential decays like r−ν with ν > 3. This implies that
ρex

i (r) decays like r−(ν+2), i.e. it too follows a power law rather
than an exponential decay for large r . The part of the charge
distribution that depends on sign of the ionic charge decays like
hQQ(r), i.e. like r−(ν+4).

The polarization response function χ(r) in equation (3)
can explicitly be written in terms of the charge–charge
correlations as

χ(r) = −βnq
[
qQδ

(3)(r)+ nqhQQ(r)
]
, (57)

which accordingly decays like r−(ν+4) for large r . Consider
the response due to a small point charge placed at the origin.
It follows from equation (3) with �Ext proportional to φCoul(r)
that the polarization charge density from a small point charge
decays like r−(ν+2) in the linear regime. The total potential
from the point charge and the polarization charge density
therefore decays like r−ν , which follows from an integration
of the Poisson equation. Thus the unit screened Coulomb
potential φ0

Coul(r) from equation (8) decays like r−ν when
r → ∞, i.e. the same power as in the nonelectrostatic part
of the pair potential. All these results show that the presence
of a power law potential in addition to the Coulomb potential
gives very different qualitative behaviour for large r compared
to the previous case without such interactions.
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4.2. Dispersion interactions between ions

Let us now specialize to the case of dispersion interactions
between the ions, γi jr−ν with ν = 6. Then the density–
density correlations hN N (r) decay like r−6, charge–density
correlations hQN (r) like r−8 and charge–charge correlations
hQQ(r) like r−10. This behaviour is, in fact, fundamental
for fluids of charged particles. In quantum statistical
mechanics for Coulomb fluids, where the particles only interact
with Coulombic r−1 interactions apart from a hard core
potential, hN N (r), hQQ(r) and hQN (r) decay exactly in this
manner [29, 30]. These power law decays are a consequence
of the quantum fluctuations that also give rise to the dispersion
interaction. Thus, in classical statistical mechanics the
inclusion of a r−6 potential term as an effective dispersion
interaction gives rise to the correct asymptotic behaviour of the
pair correlation functions for long distances.

We shall now in more detail treat a model electrolyte with
the pair interaction

ui j(r) = qi q jφCoul(r)− γi j

r 6
+ ushort

i j (r) (58)

where ushort
i j is any sufficiently short-range interaction. It may,

for example, include the repulsive r−12 part of a Lennard-Jones
potential (which generates power law r−η contributions with
η � 12 in the correlation functions) or be of finite range like
a hard core potential. In the primitive model we replace φCoul

by φCoul/εr. When the polarizability of an ion is smaller than
that of the solvent we may have a negative γi j . For a plasma in
vacuum all γi j are positive.

We have [15] when r → ∞

hN N (r) ∼ �N N

r 6

hQN (r) ∼ −30
�QN

r 8

hQQ(r) ∼ 1680
�QQ

r 10
,

(59)

where �I J are state dependent constants

�N N = βK 2
∑

i j

θiθ jγi j = βK 2γN N

�QN = βK

κ2
D

∑
i j

biθ jγi j = βK

[
γQN

κ2
D

+ BγN N

]

�QQ = β

κ4
D

∑
i j

bi b jγi j = β

[
γQQ

κ4
D

+ 2B
γQN

κ2
D

+ B2γN N

]
,

(60)
where b± = Bκ2

Dθ± ± 1
2 and B is a state dependent constant

that can be written in terms of the second moment of hQN (r)

B = −n

6

∫
dr r 2hQN (r) (61)

(in the notation of [15] B = K τn/κ2
D).

It is most significant that �QN and �QQ depend on the
ratio of the strengths of the dispersion interactions (γi j ) and the

electrostatic coupling (κ2
D or κ4

D). Both �N N and �QN depend
on the compressibility (via K ). In the general case �N N ,�QN

and �QQ can be positive or negative, but if all γi j > 0 we
always have �N N > 0. B can have either sign.

If the dispersion interaction satisfies the ‘mixing rule’
γi j = (γiiγ j j)

1/2 we have

�QQ�N N = (�QN )
2, (62)

which motivates why the numerical factors for hQQ and hN Q in
equation (59) are not included in �I J . In this case �N N > 0
and �QQ � 0, while �QN can be positive or negative. The
term γQN in �QN and �QQ is here proportional to

√
γ++ −√

γ−− so its sign depends on the relative strength of the
dispersion interactions between anions and between cations.

4.3. The screened Coulomb potential

From our results for r−ν interactions at the end of section 4.1
it follows that the screened Coulomb potential decays like r−6

when ν = 6. More precisely, we have when r → ∞

φ0
Coul(r) ∼ − L QQ

r 6
, (63)

where L QQ = �QQκ
4
D/(βq2

Q) which we can write

L QQ =
∑

i j

bi b j
γi j

q2
Q

= 1

q2
Q

[
γQQ + 2Bκ2

DγQN + B2κ4
DγN N

]
.

(64)
Thus the ratio between the strength of the dispersion pair
interactions and the square of the average ionic charge qQ

enters the coefficient L QQ . When Bκ2
D is small L QQ ≈

γQQ/q2
Q = (γ++−2γ+−+γ−−)/(q++|q−|)2, which is entirely

determined by the interaction potential parameters. Note that
if the mixing rule for γi j is satisfied γQQ = (

√
γ++ −√

γ−−)2.
The spatial propagation of the electrostatic potential like

an r−6 power law is intimately linked with the polarization
of the electrolyte brought about by unequal dispersion
interactions between the various ions. A separation of charge
in one region does not only give rise to an electrostatic
potential that polarizes other regions, but also a change in the
dispersion interaction between the regions that is unequal for
the various ions and therefore leads to a further contribution to
the polarization. The dispersion interactions are not screened
by the ions and therefore remain relatively long ranged. The
net polarization charge density decays, as we have seen above,
like r−8. The expression (64) for L QQ gives the appropriate
weighing of the dispersion and electrostatic effects in this
polarization.

That φ0
Coul(r) ultimately decays like r−6 for large r does

not prevent it from having an exponential decay for smaller r .
As we have seen above such a decay is connected to a zero
of the dielectric function, ε̃(k) = 0, in complex k space and
a leading zero k = iκ still exists in the current case. The
presence of a power law r−6 interaction in the pair potential
prevents, however, a zero k = iκ with a real κ value from
occuring [16]. Thus κ is complex valued here and, as discussed
in the appendix, this leads to a term in φ0

Coul(r) that decays in
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an exponentially damped oscillatory manner, as in the rhs of
equation (A.1). This term is, however, not the leading term
here and is ultimately dominated for large r by the power
law contributions to φ0

Coul(r). (A power law term gives rise
to a singularity at k = 0, e.g. r−6 gives a |k|3 term that is
nonanalytic at k = 0. This is the basis of the asymptotic
analysis above, see [15, 16].)

Thus the electrostatic and dispersion interactions are
coupled in an intricate manner. The dispersion interaction
does not only cause a long-range r−6 tail of the electrostatic
potential, but it also causes the exponentially screened part
of the potential to turn oscillatory. (Note that the mechanism
for these oscillations is entirely different from those that occur
for strong electrostatic coupling mentioned in section 3.6 and
the appendix.) The oscillations remain at infinite dilution,
but one can show [16] that the screening length ξ−1 and the
wavelength λ = 2πη−1 of the exponential decay, where
ξ = Re(κ) and η = Im(κ), have the following limiting law
in the infinite dilution limit: ξ−1 ∝ n−1/2 (as in the usual
case) and λ ∝ n−3 when n → 0. This means that the
wavelength λ is proportional to the screening length to the
sixth power in this limit, which implies that the exponential
contribution has decayed to a very small number long before
one single oscillation has occurred. For dilute electrolytes the
oscillatory contribution is accordingly indistinguishable from
a plain exponential one, i.e. the oscillations have no noticeable
effects. When the electrolyte concentration is increased this
relationship between the screening length and the wavelength
no longer holds. Then the oscillations may be important (how
high the electrolyte concentration has to be before this happens
is still an open question). However, for very weak dispersion
forces the wavelength will be large and the oscillations can be
ignored (λ goes to infinity when all γi j go to zero).

We accordingly have a situation where the screened
electrostatic potential decays like r−6 for long distances and
has an exponentially (albeit oscillatory) decaying part that is
important for smaller distances. Both hQN (r) and hQQ(r) have
exponentially decaying parts with the same decay length and
wavelength as φ0

Coul(r) despite the fact that, as we have seen,
the power law decays of these functions are different. (This
follows from the fact that in Fourier space ε̃(k) occur in the
denominator of all these functions, which therefore have the iκ
pole in common.)

The charge distribution around an i ion, ρex
i (r),

accordingly also has an exponentially decaying part with this
decay length and wavelength in addition to the power law
contributions that dominate for large r . From equations (56)
and (59) it follows that when r → ∞

ρex
i (r) ∼ −30

nq�QN

r 8
(65)

irrespectively of the sign of the ionic charge. The
part of the charge distribution that depends on this sign
comes from the hQQ term in equation (56) and decays
as 1680qiq

−1
Q nq�QQ r−10 (there are also contributions from

hQN (r) that decay like r−10). Since �QN contains the
compressibility via K in equation (60), the magnitude of the

r−8 tail of ρex
i (r)will be large when the compressibility is large

(e.g. near a phase separation).
From equation (65) and Poisson’s equation it follows that

the electrostatic potential from an i ion decays like

ψi (r) ∼ nq�QN

εrε0r 6
(66)

when r → ∞, where we have included the factor εr in
the denominator as applicable in the primitive model. The
effective charge as defined in equation (9) is accordingly

q0 = −qQ�QN

�QQκ
2
D

(67)

and is the same for both species. When the mixing rule for
γi j is satisfied, the sign of q0 is determined by �QN . That q0

has the same sign for anions and cations is a consequence of
the fact that the hQN term in (56) is the same for both species.
The part of ψi (r) that is species dependent decays like r−8 (it
originates from the hQQ term).

The occurrence of the fairly long-ranged charge distribu-
tion around the ion complicates charge density renormalization
schemes like that in section 3.3. The screened Coulomb inter-
action does not account for all effects in the long-range part
since the dispersion interactions in themselves give rise to po-
larization charges far away. Therefore it does not make the
same physical sense to do a renormalization solely based on
φ0

Coul as in equation (27), even if it is formally possible to do it
in the same manner here. (If one does, one obtains a renor-
malized charge density that decays like r−6, which is more
long-ranged than the actual charge density.) The exponentially
decaying parts of the charge density and electrostatic potential
are, however, dominated by electrostatic effects, at least when
the dispersion interactions are not too strong. When this is
fulfilled, the qualitative picture obtained in section 3 will hold
for these parts (except the oscillations) even in the presence
of dispersion interactions, but one cannot simply take over the
formulae for the asymptotic relationships in section 3.4 as they
stand since they do not properly consider the power law de-
cays. The magnitude of the power law parts of ρex

i and ψi can
be obtained from the results in this section.

5. Summary

An exact statistical mechanical formalism for the screened
electrostatic potential from and interaction between ions and
molecules in electrolyte solutions with molecular solvent is
presented. Key concepts are (i) the unit screened Coulomb
potential φ0

Coul(r), which gives the weak field propagation
of the electrostatic potential (the Green’s function of the
electrolyte), and (ii) the renormalized charge density ρ0

i of
each molecule. The latter contains the nonlinear polarization
response of the electrolyte solution due to the interactions
with the molecule. The average electrostatic potential ψi

from a molecule is written, equation (27), in terms of φ0
Coul

and ρ0
i in complete analogy to Coulomb’s law. The screened

electrostatic interaction free energy of two molecules, wel
i j ,

in the solution is similarly expressed as the Coulomb-like
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interaction between the renormalized charge density of one
molecule, ρ0

i , and that of the other, ρ0
j , as mediated by the

unit screened Coulomb potential φ0
Coul (equation (41)). These

expressions for ψi and wel
i j are valid for all distances. The long

distance asymptotic decay behaviours of these functions are
investigated and it is shown how they can be expressed in terms
of multipole expansions based on the Yukawa function family
exp(−κr)/rm. The effective net charge, effective dipole
moment and higher multipole moments of each molecule in
the system are thereby defined. The expressions for these
quantities (the Yukawa charge, Yukawa dipole moment etc)
differ from the ordinary Coulombic ones. In an electrolyte
solution all multipole moments contribute to the leading
asymptotic term for large separations, which implies that the
full directional dependence of the electrostatic potential from
a molecule remains in the longest range tail. These decay
behaviours are strictly valid provided the nonelectrostatic part
of the molecular pair interactions decays faster than any power
law and provided the electrolyte concentration is not too high
(the screening length κ−1 not too short) and the system is not
close to criticality.

In the presence of dispersion interactions between the
particles in the electrolyte solution the exponential decay is
no longer dominant in the electrostatics for large separations.
Due to a nontrivial coupling between the electrostatic and
dispersion pair interactions between the ions, the electrostatic
potential from an ion ultimately decays like a power law
for long distances. Furthermore, this coupling makes the
exponentially decaying terms become oscillatory.

The main results for the long distance decay of the
electrostatic potential for various cases are summarized in
table 1.
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Appendix. Oscillatory screened Coulomb potential

The screened Coulomb potential φ0
Coul(r) has in some cases

an exponentially damped oscillatory decay or it can have
a contribution with such behaviour. As we have seen,
a nonoscillatory Yukawa function decay, equation (15),
corresponds to a zero of the dielectric function ε̃(k) in complex
k space (a pole of φ̃0

Coul(k) = 1/[ε0k2ε̃(k)]). We then have
ε̃(iκ) = 0 with a real value κ , i.e. the zero iκ occurs on
the imaginary axis. Several such zeros can occur, e.g. iκ ′
mentioned in section 3.6.

The dielectric functions can, however, also have a zero
that does not lie on the imaginary axis. This corresponds to a
solution of ε̃(iζ ) = 0 with a complex ζ . Such solutions always
come in pairs, ζ = ξ+iη and its complex conjugate ζ = ξ−iη,

where ξ and η are real. Together, these singularities of φ̃0
Coul(k)

give rise to a term in φ0
Coul(r) that decays in an exponentially

damped oscillatory manner, cos(ηr + ϑ) exp(−ξr)/r , where

ϑ is a constant (a phase shift), cf [24]. In fact, the leading zero
iκ can be a solution of this kind and then we have for large r

φ0
Coul(r) ∼ cos(ηr + ϑ)

e−ξr

4πε0αr
(A.1)

where ξ = Re(κ) and η = Im(κ). The constants α and ϑ
originate from Er in equation (20), that is also complex valued
here. Equation (A.1) holds as an asymptotic law provided
no other, longer-ranged contributions exist. In the presence
of nonelectrostatic power law interactions, section 4, such
contributions do exist and then the rhs of equation (A.1) is a
term in φ0

Coul(r) that is dominated by the more long-ranged
parts for large r .

A complex κ can, for example, arise when two purely
imaginary zeros iκ and iκ ′ approach each other, then merge
and finally give rise to two complex roots iκ and iκ . This
happens in electrolyte solutions when the electrostatic coupling
becomes strong enough, cf. section 3.6, a phenomenon that was
first found by Kirkwood [31]. For sufficiently low electrolyte
concentrations the leading singularity of φ̃0

Coul(k) is, however,
always a solution of ε̃(iκ) = 0 with a real κ for the systems
treated in section 3.

For systems with dispersion interactions, section 4, κ is
complex valued even at infinite dilution. This is caused by the
appearance of a term proportional to k3 in ε̃(k) from the r−6

interaction. This term together with other terms with higher
odd powers of k prevent the zero at iκ from appearing on the
imaginary axis, at least when the electrolyte concentration is
not too high [16].

The formulae in this paper can be generalized to
accommodate complex κ and oscillatory Yukawa-like decays.
This is left to future work.
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